
Version control for
researchers with Git and

GitHub
Karin Knudson

karin.knudson@tufts.edu

Course materials: https://karink520.github.io/git-and-github-intro/

https://karink520.github.io/git-and-github-intro/

Why use Git and GitHub?

• Sleep better at night with version control and remote repositories

• Collaborate smoothly with teammates

• Promote and maintain quality code

• Increase the impact of your research

• Develop your career

• Contribute in the open source community

After this workshop you should be able to…

• Explain how version control, Git, and GitHub can help you
• Create a new project that is tracked with Git, or add Git to an existing

project
• Use a simple workflow with Git and GitHub for small or individual

projects
• Use a more complex workflow with branches and pull requests
• Contribute to some else’s open source project on GitHub
• Know where to go to learn more

A few key concepts

commits

metadata (author, date)
parents (other commits)
“snapshot” of
files/directories

metadata (author, date)
parents (other commits)
“snapshot” of
files/directories

metadata (author, date)
parents (other commits)
“snapshot” of
files/directories

9aed74b… a6b6023… 66e7764…

40 digit hexadecimal string that
refers to each commit

branching

main

newfeature

bugfix

Staging area

We may not want to commit all of files or changes. We will add files
and changes to a staging area before we commit them.

• Git = software for version
control

Will learn to use basic Git
commands: init,
remote, fetch, merge,
status, add, commit,
merge, push, fetch,
checkout

Git vs. GitHub

• GitHub = a repository hosting service
with a graphical interface and
additional tools for collaboration, etc.

Will learn to put repositories on
GitHub, collaborate on others’ GitHub
repositories, use GitHub pull requests.

Other options: e.g. BitBucket

Set up a new repository with Git and GitHub

local repository

remote repository
(often called origin)

GitHub

push

• Initialize with git init (double check that this worked with ls –a to see the new directory called
.git that this command created)

• Add and commit any files you want as starting points:
git add <filename>
git commit –m “initial commit”

• Connect your repository to a remote GitHub repository with GitHub’s interface and git remote add

• Copy the content you created to your remote repository (hosted on GitHub) with git push

Follow the numbered steps in parts I and II

https://xkcd.com/1656/

https://xkcd.com/1656/

git + command + flags/arguments

git fetch origin
git merge origin main
git add hello.py
git commit –m “my first commit”
git push -u origin main

local remote
(origin)

fetch

merge

add

commit

status

(write and edit code)

local remote
(origin)

push

local remote
(origin)

fetch

merge

Follow the instructions in part III to practice
the workflow now

https://xkcd.com/1296/

https://xkcd.com/1296/

Merge conflicts

• If you and a collaborator are simultaneously changing different parts
of the code and merging, no problem!
• If you change a line of code, and in the meantime some one has made

a different change to the same line and pushed those changes, you
can have a merge conflict.

Checking out older commits

• Make sure you have committed all your changes, and then type something
like

git checkout 66e77
(numbers/digits refer to a commit – you can see the hashes for each commit
by typing git log (or on GitHub).
• Your files will change to the state they were in for the commit you just
checked out. You will then be working in a detached HEAD state, and can
look around and explore.
• Move back to where you were working (e.g. the main branch) to continue
developing and editing with:

git checkout main

(CAUTION: git checkout <filename> is dangerous).

Use Git branches and
GitHub pull requests

• Instead of making all changes to main branch, create different branches for
different features.
• Make branches locally, and then create and connect them to corresponding

remote branches.
• Once your feature-specific branch is where you want it to be, then merge

the changes on this branch back into the main branch of the remote
repository.
• Use GitHub’s pull requests to get collaborator’s consent and input before

merging the code on feature branch into the main branch of the remote
repository.
• Move between branches with the checkout command

(caution: git checkout <filename> is dangerous).

main

newfeature

bugfix

Follow the instructions in part V to practice
the workflow now

https://xkcd.com/1597/

https://xkcd.com/1597/

Collaborating on someone else’s repository

Collaborating closely?
Someone can invite you as a collaborator to a repository on GitHub (Settings
-> Manage Access -> Invite a collaborator), and then you can clone it (will get
complete history).

Just want someone’s code (and no history)?
Download it

Contributing to a repository you don’t have access to?
Fork and clone (see next slide), and then use pull requests

Using GitHub forks and pull requests to build
on a repository

local

remote
(origin)remote

(origin)

remote
(upstream)

fork on GitHub to copy

Your GitHub

Someone else’s GitHub

edit and commit changes

clone to make a
local copy of
the repository

push changes

fetch and merge changes
from upstream to stay
up-to-date with original project

Use a pull request to
ask the other person to
include your changes

“Homework”
• Contribute to

https://github.com/karink520/TuftsGitHubSampleToUpdate using the
process above as outlined in part VI.

https://xkcd.com/2324/

https://github.com/karink520/TuftsGitHubSampleToUpdate
https://xkcd.com/2324/

Some other important topics

• Stashing changes
• Undoing changes and reverting
• See what has changed with git diff
• Ignoring files you don’t want to track
• Use ssh to connect to GitHub
• GitHub actions (e.g. to automatically run tests or other checks)

(see part VII)

Resources (part VIII)
•Searches and StackOverflow

• DangitGit!? https://dangitgit.com/

• GitHub Guides https://guides.github.com/introduction/git-handbook/

• Browser game for learning about Git branching https://learngitbranching.js.org/

•“A minimal tutorial”: https://kbroman.org/github_tutorial

• Atlassian tutorials https://www.atlassian.com/git/tutorials

and Git “cheat-sheet” https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet)

• MIT CSAIL's "Missing Semester" lesson on Git:

https://missing.csail.mit.edu/2020/version-control/

• Pro Git (book) https://git-scm.com/book/en/v2

• Renaming the default branch: https://dev.to/rhymu8354/git-renaming-the-master-

branch-137b

https://missing.csail.mit.edu/2020/version-control/
https://git-scm.com/book/en/v2
https://dev.to/rhymu8354/git-renaming-the-master-branch-137b

Questions?

